Noninvasive Coronary Artery Imaging
Magnetic Resonance Angiography and Multidetector Computed Tomography Angiography

A Scientific Statement From the American Heart Association Committee on Cardiovascular Imaging and Intervention of the Council on Cardiovascular Radiology and Intervention, and the Councils on Clinical Cardiology and Cardiovascular Disease in the Young

David A. Bluemke, MD, PhD, FAHA, Chair; Stephan Achenbach, MD; Matthew Budoff, MD, FAHA; Thomas C. Gerber, MD, FAHA; Bernard Gersh, DPhil, MD, FAHA; L. David Hillis, MD; W. Gregory Hundley, MD, FAHA; Warren J. Manning, MD, FAHA; Beth Feller Printz, MD, PhD; Matthias Stuber, PhD; Pamela K. Woodard, MD, FAHA

S
is from the early 1960s, selective x-ray coronary angiography has provided the only means of visualizing the coronary arterial system in vivo. However, it has several disadvantages. First, the incidence, albeit relatively low, of so-called major adverse events (death, myocardial infarction, or stroke) during or within 24 hours of selective coronary angiography is reported to be 0.2% to 0.3%, and the incidence of so-called minor complications (most of which are related to problems with the peripheral vessels through which catheters are inserted) is roughly 1% to 2%.1–3 Second, x-ray coronary angiography is accompanied by a modest amount of discomfort, because the placement of catheters is invasive. Third, it is expensive: the required equipment is costly, and the performance of the procedure necessitates considerable time and skill of highly trained physicians and support personnel. Last, the information obtained via catheter-based coronary angiography pertains to the coronary arterial lumen alone. As a result, alternative methods of visualizing the coronary arterial system that would allow one to avoid these disadvantages are desirable.

Over the past 15 years, substantial advances have been made in noninvasive cardiac imaging in general and in visualization of the coronary arteries in particular. Magnetic resonance angiography (MRA) of the coronary arteries was advanced in the early 1990s with the development of high-speed gradient techniques and dedicated cardiac coils. The primary advantage of this technique is the patient’s lack of exposure to ionizing radiation or iodinated contrast media. Coronary MRA may also be combined with other magnetic resonance (MR) imaging techniques for assessment of cardiac function, structure, blood flow, and viability.4

Electron-beam computed tomography (CT) with iodinated contrast injection was originally used to perform coronary angiograms, but this has been supplanted by multidetector CT (MDCT) scanners that have 16 to 256 rows of detectors. MDCT can provide visually compelling images of the coronary arterial tree, although at present, the necessary radiation dose is higher than that associated with x-ray coronary angiography.

In this statement, we discuss and summarize these two noninvasive modalities, MRA and computed tomographic angiography (CTA), which may be used for coronary artery evaluation. Because the advantages and limitations of CT to assess the presence and extent of coronary arterial calcification are discussed in a separate document sponsored by the American Heart Association, the assessment of coronary arterial calcification is not presented in this statement. For both MRA and CTA, we provide a discussion of technical issues, applications, advantages, and disadvantages. The American Heart Association makes every effort to avoid any actual or potential conflicts of interest that may arise as a result of an outside relationship or a personal, professional, or business interest of a member of the writing panel. Specifically, all members of the writing group are required to complete and submit a Disclosure Questionnaire showing all such relationships that might be perceived as real or potential conflicts of interest.

This statement was approved by the American Heart Association Science Advisory and Coordinating Committee on April 2, 2008. A single reprint is available by calling 800-242-8721 (US only) or by writing the American Heart Association, Public Information, 7272 Greenville Ave, Dallas, TX 75231-4596. Ask for reprint No. 71-0452. A copy of the statement is also available at http://www.americanheart.org/presenter.jhtml?identifier=3003999 by selecting either the “topic list” link or the “chronological list” link. To purchase additional reprints, call 843-216-2533 or e-mail kelle.ramsay@wolterskluwer.com.

Expert peer review of AHA Scientific Statements is conducted at the AHA National Center. For more on AHA statements and guidelines development, visit http://www.americanheart.org/presenter.jhtml?identifier=3023366.

Permissions: Multiple copies, modification, alteration, enhancement, and/or distribution of this document are not permitted without the express permission of the American Heart Association. Instructions for obtaining permission are located at http://www.americanheart.org/presenter.jhtml?identifier=4431. A link to the “Permission Request Form” appears on the right side of the page.

(Circulation. 2008;118:000-000.)
© 2008 American Heart Association, Inc.
Circulation is available at http://circ.ahajournals.org

DOI: 10.1161/CIRCULATIONAHA.108.189695

Downloaded from circ.ahajournals.org by on June 28, 2008
limitations, after which we offer recommendations for current and future uses. To accomplish this, the Writing Committee conducted a comprehensive review of the literature published between 1990 and 2006. Literature searches of the PubMed/MEDLINE databases were undertaken to identify pertinent articles. Searches were limited to the English language. The major search terms included the following: coronary angiography, coronary disease, coronary vessels, humans, magnetic resonance angiography, tomography, and x-ray computed.

MRA of the Coronary Arteries

Technical Considerations for Coronary MRA

Images of the heart must be obtained rapidly and with high temporal resolution to reduce motion artifacts that could otherwise cause blurring in coronary MRA images. Unlike angiographic images obtained via catheter, MRA (and CTA) images take a long time to acquire; for example, high-resolution MRA visualization of the entire coronary arterial tree takes minutes rather than seconds. In addition, cardiac motion must be accounted for during this time period.

Cardiac Motion

Two sources of motion are associated with coronary MRA: motion related to intrinsic cardiac contraction/relaxation and motion attributable to superimposed diaphragm and chest wall movement during respiration. Because the extent of motion exceeds the diameter of the coronary artery, blurring artifacts of the coronary artery lumen will occur unless adequate motion-suppression techniques are applied. ECG gating is used to account for intrinsic cardiac motion.

Coronary artery motion occurs in a triphasic pattern during the cardiac cycle. Mid-diastole is the preferred time for image acquisition, because cardiac motion is minimized while coronary flow is high. The patient-specific diastasis period (of reduced coronary motion) is usually determined by visual inspection of cine images perpendicular to the long axis of the proximal/mid-right coronary artery (RCA). Multiple heartbeats are required to generate a coronary MRA. The beat-to-beat variation in the duration of the cardiac cycle and the period of diastasis results in image blurring. β-Blockade prolongs the period of coronary diastasis and may help to improve the quality of coronary MRA images.

Respiratory Motion

A straightforward approach to suppressing respiratory motion involves the use of breath-holding during coronary MRA. However, breath-holding strategies have several limitations. First, spatial and temporal image resolution is limited by the patient’s ability to hold his or her breath. Some patients may have difficulty sustaining adequate breath-holds, particularly when the procedure lasts longer than a few seconds. Additionally, it has been shown that during a sustained breath-hold, there is up to 1 cm of cranial diaphragmatic (and thus cardiac) drift.5–7 Thus, at present, breath-hold strategies for coronary MRA have limited applicability to the broad range of patients with cardiovascular disease.

To overcome these limitations, so-called navigator echoes8–11 (similar to M-mode echocardiographic beams) can be used during free-breathing coronary MRA to track a patient’s diaphragmatic motion. MRA images are acquired only when the diaphragm is within 3 to 5 mm of its end-expiratory position. Respiratory blurring is minimized with this method and may be further reduced by using real-time tracking of the imaged volume position.9

Free-breathing navigator coronary MRA offers improved patient comfort as compared with breath-holding techniques and does not require significant patient motivation. However, this method prolongs the duration of the coronary MRA, because image data are collected only when the end-expiratory position of the diaphragm coincides with the period of coronary artery diastasis.12 Typical examination times for free-breathing 3D navigator coronary MRA are 7 to 15 minutes.

Spatial Resolution

The spatial resolution achievable with 3D MRA imaging (0.7 to 0.8 mm in-plane resolution and 1 to 3 mm through-plane resolution) is inferior to that obtainable with x-ray coronary angiography (<0.3 mm).

For MRA imaging, improvement in spatial resolution is generally accompanied by reduction in the signal-to-noise ratio (SNR). As the voxel size is reduced toward the resolution achievable with x-ray angiography, methods to reduce motion artifacts from both intrinsic and extrinsic motion of the coronary arteries become increasingly important.13

Contrast Enhancement in Coronary MRA

Coronary MRA examinations are typically performed without the addition of intravenously administered contrast agents. The relative signal of the coronary arteries is augmented using fat-saturation prepulses,14 magnetization transfer contrast prepulses,15 or T2 preparatory pulses,16,17 which take advantage of natural T2 differences between the blood and the surrounding myocardium. When these techniques are used, the coronary lumen appears bright, whereas the surrounding myocardium has reduced signal intensity. The lack of exposure to ionizing radiation and the absence of exogenous contrast agents facilitate repeat MRA studies when clinically warranted.

With the use of intravenous MR contrast agents, the T1 relaxation time for blood can be shortened, which allows for an increased contrast-to-noise ratio for coronary MRA.18,19 The extravascular contrast agents that are presently available in the United States for coronary MRA quickly extravasate from the coronary lumen. Use of these agents requires rapid first-pass imaging, which necessitates breath-holding20 and results in images with reduced spatial resolution (as discussed in Spatial Resolution, above).

Recent Technical Developments

Technical improvements in coronary MRA include the development of MR methods that generate improved coronary signals and support reduced scanning times while simultaneously minimizing the complexity of the examination.
Steady-State With Free-Precession Coronary MRA
Use of the steady-state with free-precession (SSFP) method to perform MRA makes it possible to obtain high signal intensity from the coronary arteries and very high contrast between the ventricular blood pool and the myocardium without the need for contrast agents.21 SSFP imaging permits high-quality coronary MRA during free-breathing with substantial improvements in SNR, contrast-to-noise ratio, and vessel sharpness as compared with standard T2-prepared gradient-echo imaging.22 Therefore, SSFP imaging may lead to improved identification of significant coronary artery stenoses. At present, SSFP is being evaluated at many clinical and research centers.

Phase-Contrast MR Imaging
The phase-contrast technique measures blood-flow velocity23 combined with arterial diameter to yield a quantitative measurement of blood flow (in milliliters per minute). Blood flow can be determined when a patient is at rest or after he or she is stressed for measurement of coronary artery blood-flow reserve.23,24 Although it has been demonstrated in clinical research, this method can be applied on most 1.5-Tesla and some 3.0-Tesla MR scanners. Coronary blood flow is measured along a 2-cm straight proximal or mid-arterial segment in vessels that are >2 mm in diameter.25

Parallel Imaging for Coronary MRA
Parallel imaging is an MR method for reducing MR scanning time by a factor of 2 to 3.26 However, the trade-off for reduced acquisition time is reduced SNR for visualization of the coronary arteries.

3-Tesla Coronary MRA
Most coronary MRA examinations are performed on 1.5-Tesla MR systems. Higher field, 3-Tesla systems provide better signal and contrast values relative to 1.5-Tesla systems. The recent availability of 3-Tesla systems equipped with dedicated cardiac hardware (eg, real-time spectrometer, parallel receiver technology with high bandwidth, body radiofrequency send coil, vector ECG) and software (parallel imaging, navigators, interactive interface) may provide a means for substantial coronary MRA improvements in the future.27

Whole-Heart Coronary MRA
Until recently, coronary MRA was performed with only portions of each arterial tree visible in each set of images.28 This method requires the MR imaging technologist to have extensive experience and familiarity with coronary artery anatomy. The recent development of whole-heart coronary MRA, which is analogous to coronary CTA, allows for imaging of the entire coronary artery tree in an axially acquired 3D volume. Postprocessing of the 3D images is performed in a manner similar to that for coronary CTA. To collect such large volumetric data sets, spatial resolution is somewhat lower (usually >1 mm in-plane and through-plane resolution), data are collected over approximately 100 ms of each cardiac cycle (with potential for blurring), and scan times are lengthy (10 to 15 minutes), thereby mandating the use of navigator echoes. Nevertheless, the whole-heart coronary MRA approach has gained rapid acceptance on the basis of promising initial results.29

Clinical Applications and Results

Anomalous Coronary Artery
Projection x-ray angiography has traditionally been the imaging test of choice for the diagnosis and characterization of coronary artery anomalies. However, the presence of an anomalous coronary artery origin is sometimes only suspected after the invasive procedure, particularly in the case of unsuccessful engagement or visualization of a coronary artery. In addition, the declining use of pulmonary artery catheters during routine x-ray coronary angiography has made it more difficult to discern the anterior versus the posterior trajectory of the anomalous vessels.

Multiple published series exist30–33 of patients who underwent blinded comparison of coronary MRA with x-ray angiography (Table 1). Early coronary MRA studies often used a 2D breath-hold ECG-triggered segmented k-space gradient-echo approach.30–36 These 2D coronary MRA studies uniformly reported excellent accuracy, including several studies in which coronary MRA was determined to be superior to x-ray angiography.31,32 At most centers, 3D coronary MRA is now used, because it offers superior reconstruction capabilities with similarly excellent results.37

For these reasons, coronary MRA is the preferred test for younger patients in whom an anomalous artery origin is suspected or a known anomalous coronary artery origin needs to be clarified and for patients who have another cardiac anomaly associated with coronary anomalies (eg, tetralogy of Fallot).

Coronary Artery Aneurysms/Kawasaki Disease
Although coronary artery aneurysms are relatively uncommon, recent studies indicate an important role for coronary MRA for assessment of this condition. The vast majority of acquired coronary aneurysms in children and younger adults are due to Kawasaki disease, a generalized vasculitis of unknown etiology that usually occurs in children under 5 years old. Approximately 5% of patients develop coronary artery aneurysms/Kawasaki disease.
Good correlation between coronary MRA and x-ray coronary angiography has also been reported for ectatic coronary arteries (distinct from Kawasaki disease) among adults.41

Coronary MRA for Identification of Native Vessel Coronary Stenoses

The results of coronary MRA in single-center trials are presented in Table 2. No efficacy data have been reported regarding “screening” coronary MRA in high-risk populations.

A multicenter single-vendor study of 3D coronary MRA in 109 patients demonstrated 93% sensitivity, 58% specificity, and 81% negative predictive value for the identification of ≥50% diameter stenosis by quantitative coronary angiography (Table 3).28 The sensitivity and negative predictive value were particularly high for the identification of left-main or multivessel disease, thereby demonstrating a role for coronary MRA for this subset. Accordingly, coronary MRA may be valuable for rendering a diagnosis for patients who present with dilated cardiomyopathy/congestive heart failure in the absence of clinical infarction and for determining whether the problem is ischemic or nonischemic. A limitation of this study for general application of the results was the use of MR scanners from the same vendor at all sites.

Single-center data obtained from using free-breathing navigator-gated whole-heart MRA suggest that the whole-heart approach provides faster acquisitions (<15 minutes) and superior accuracy,29–46 with sensitivities of 80% to 90% and specificity of >90%. Two comparison studies of coronary MRA and 16-slice MDCT demonstrated similar accuracy when compared with free-breathing coronary MRA47 and superior results for MDCT when compared with a combination of free-breathing and lower-resolution breath-hold coronary MRA.48

At experienced research centers, phase-contrast MR coronary artery flow measurements can provide supplemental information regarding the physiological importance of coro-
nary artery luminal narrowing.49–54 Impaired coronary flow reserve measured by MR identifies coronary arterial luminal stenosis of \textgreater70\% in the left-main and proximal coronary artery segments when the angiographic appearance of the stenosis is of intermediate severity.49–51 In individuals who have undergone percutaneous coronary artery stent placement in the left anterior descending coronary artery, impaired phase-contrast MR flow-reserve measurements reliably identify luminal renarrowing of \textgreater50\% for symptomatic patients 3 months or more after stent implantation.52,55

The results discussed above were obtained at research-oriented centers that have the capability to perform high-quality MRCA in either single-center or single-vendor trials. The utility of coronary MRA in general practice has not been established, and multivendor trials have not been conducted.

Coronary MRA for Coronary Artery Bypass Graft Assessment

Conventional free-breathing ECG-gated 2D spin-echo MRA56–59 and 2D gradient-echo MRA60–63 in the transverse plane have both been used with knowledge of the origin and touchdown site of each graft to reliably assess bypass graft patency (Table 4). Additionally, both 3D noncontrast64 and contrast-enhanced coronary MRA have been used for assessment of graft patency.65,66 with slightly improved results. The accuracy of ECG-gated SSFP sequences appears to be similar to that of spin-echo and gradient-echo approaches.67

A practical limitation of coronary MRA bypass graft assessment is related to local signal loss and artifacts that are caused by nearby metallic objects (hemostatic clips, ostial stainless steel graft markers, sternal wires, coexistent prosthetic valves and supporting struts or rings, and graft stents). Although coronary MRA has been successfully used for identification of graft occlusion, the inability to identify various degrees of luminal narrowing in diseased yet patent grafts is also a hindrance to clinical utility and acceptance.

CTA of the Coronary Arteries

CTA Techniques and Technical Issues

Because of the high motion velocity of the coronary arteries, CT scanners must have sufficiently high temporal resolution to provide images of the beating heart with minimal motion artifact. Depending on the patient’s heart rate during the scan and the phase of the cardiac cycle at which the coronary arteries are captured, a temporal resolution of 19 to 75 ms is desirable for coronary CTA.68,69 Similar to coronary MRA, coronary CTA temporal resolution is currently lower than is optimal for coronary artery depiction.

Multidetector Computed Tomography

MDCT scanners (also known as multislice CT) with x-ray tubes rotating fast enough to allow coronary artery imaging (500 ms or less per rotation) became available in the late 1990s.70,71 The temporal resolution of MDCT is approximately half the time it takes for the x-ray gantry to complete a 360° rotation around the patient when a half-segment reconstruction is used. The nominal temporal resolution can be improved by a factor of 2 to 3 (depending on the heart rate) by segmented reconstruction techniques that combine proj-

Table 3. Three-Dimensional Navigator Coronary MRI: Multicenter Trial Results

<table>
<thead>
<tr>
<th>Per-Patient Analysis, %</th>
<th>Left Main/3-Vessel Disease, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensitivity</td>
<td>93</td>
</tr>
<tr>
<td>Specificity</td>
<td>42</td>
</tr>
<tr>
<td>Prevalence</td>
<td>59</td>
</tr>
<tr>
<td>Positive predictive value</td>
<td>70</td>
</tr>
<tr>
<td>Negative predictive value</td>
<td>81</td>
</tr>
</tbody>
</table>

Adapted from Kim et al.216

Table 4. Evaluation of Coronary Artery Bypass Graft Patency by Coronary MRA

<table>
<thead>
<tr>
<th>Reference</th>
<th>Technique</th>
<th>No. of Grafts</th>
<th>Patency, %</th>
<th>Sensitivity, %*</th>
<th>Specificity, %*</th>
<th>Accuracy, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>White et al59</td>
<td>2D spin-echo</td>
<td>72</td>
<td>69</td>
<td>86</td>
<td>59</td>
<td>78</td>
</tr>
<tr>
<td>Rubenstein et al220</td>
<td>2D spin-echo</td>
<td>47</td>
<td>62</td>
<td>90</td>
<td>72</td>
<td>83</td>
</tr>
<tr>
<td>Jenkins et al221</td>
<td>2D spin-echo</td>
<td>41</td>
<td>63</td>
<td>89</td>
<td>73</td>
<td>83</td>
</tr>
<tr>
<td>Galjee et al61</td>
<td>2D spin-echo</td>
<td>98</td>
<td>74</td>
<td>98</td>
<td>85</td>
<td>91</td>
</tr>
<tr>
<td>White et al60</td>
<td>2D GRE</td>
<td>28</td>
<td>50</td>
<td>93</td>
<td>86</td>
<td>89</td>
</tr>
<tr>
<td>Aurigemma et al62</td>
<td>2D GRE</td>
<td>45</td>
<td>73</td>
<td>88</td>
<td>100</td>
<td>96</td>
</tr>
<tr>
<td>Galjee et al61</td>
<td>2D GRE</td>
<td>98</td>
<td>74</td>
<td>98</td>
<td>88</td>
<td>96</td>
</tr>
<tr>
<td>Engelmann et al63</td>
<td>2D GRE</td>
<td>17 IMA</td>
<td>100</td>
<td>100</td>
<td>…</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>38 SVG</td>
<td>66</td>
<td>92</td>
<td>85</td>
</tr>
<tr>
<td>Molinari et al64</td>
<td>3D GRE</td>
<td>51</td>
<td>76.5</td>
<td>91</td>
<td>97</td>
<td>96</td>
</tr>
<tr>
<td>Buncle et al67</td>
<td>3D SSFP</td>
<td>23 IMA</td>
<td>96</td>
<td>73</td>
<td>100</td>
<td>74</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>56 SVG</td>
<td>82</td>
<td>89</td>
<td>40</td>
</tr>
<tr>
<td>Wintersperger et al66</td>
<td>3D gad MRA</td>
<td>28 IMA</td>
<td>89</td>
<td>96</td>
<td>67</td>
<td>…</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>48 SVG</td>
<td>73</td>
<td>94</td>
<td>85</td>
</tr>
<tr>
<td>Vrachliotis et al65</td>
<td>3D gad MRA</td>
<td>44</td>
<td>68</td>
<td>93</td>
<td>97</td>
<td>95</td>
</tr>
</tbody>
</table>

*GRE indicates gradient-recalled echo; IMA, internal mammary artery graft; SVG, saphenous vein graft; and gad MRA, gadolinium MRA.

* Sensitivity and specificity based on luminal stenosis >50%.
ection data acquired during 2 or more cardiac cycles into 1 image. Currently, MDCT scanners can acquire up to 64 slices simultaneously with a maximum temporal resolution as low as 83 ms (dual-source MDCT).

In MDCT coronary CTA, image data are acquired throughout the cardiac cycle while the patient table continuously advances through the gantry. Electrocardiographic information is used to retrospectively reconstruct images from projection data acquired during the phase of the cardiac cycle with the least cardiac motion. The speed of the patient table relative to the speed of the gantry rotation (called pitch) is such that each cross-sectional level of the heart is imaged during more than 1 cardiac cycle. The number of image slices acquired during each gantry rotation (currently ranging from 16 to 320) determines the overall duration of the MDCT scan but does not directly influence the temporal resolution.

Spatial Resolution

The smallest x-ray beam collimation possible with a given CT scanner dictates the minimal thickness of the image slices that can be reconstructed. The slice thickness affects spatial resolution. High spatial resolution allows assessment of small side branches of the coronary arteries, decreases artifacts due to partial-volume effects, and leads to better assessment of calcified coronary artery segments and in-stent stenoses. However, to have sufficiently low image noise with smaller x-ray beam collimation, a large increase of the x-ray dose is necessary.

Spatial resolution has improved with each advance in MDCT technology. Submillimeter resolution has been achieved in MDCT scanners ranging from 16 to 320 slices. The spatial resolution of the present 64-slice MDCT scanners is approximately 0.4 mm. This is an improvement over the 0.7-mm resolution of 16-slice MDCT but not as high as can be obtained with catheter-based cine angiography (<0.3 mm).

Contrast Medium Administration

Coronary CTA requires intravenous administration of an iodinated contrast medium. Power injectors are programmed to administer 50 to 160 mL of iodinated contrast medium at a rate of 4 to 6 mL/s through a cannula designed for this injection rate (typically 18 gauge or greater) that is usually placed in an antecubital vein. Accurate timing of the CT scan relative to the start of the contrast injection is the major determinant of overall image quality and enhancement of the coronary arteries. To optimize this timing, a test bolus of 10 to 20 mL of contrast medium can be injected to measure the time to peak enhancement of the aortic root; this time period is then programmed into the MDCT scanner when the coronary CTA is performed. Alternatively, the CT scanner can be set to automatically initiate scanning when the enhancement of the aortic root exceeds a predetermined threshold.

The volume of intravenous contrast medium required for coronary CTA is proportional to the injection rate chosen and the duration of the CT scan. Approximately 60 to 100 mL of contrast medium is injected for coronary CTA with present MDCT scanners.

Pharmacological Patient Preparation

Because of the limited temporal resolution of MDCT scanners, low heart rates are desirable to avoid motion artifacts. Several studies have convincingly shown that lowering the heart rate to 60 beats per minute or less by oral administration of β-receptor blocking agents 60 to 90 minutes before the scan, or intravenous administration immediately before the scan, or both, can decrease the frequency and extent of motion artifacts on the coronary CTA scan by prolonging the rest period (the time during the cardiac cycle at which coronary artery velocity is low). Image quality on lower temporal resolution MDCT scanners reveals the greater benefit of lower heart rates. For example, for scanners with a temporal resolution of approximately 250 ms, a heart rate of <60 beats per minute is needed to minimize coronary motion artifacts. For scanners with a temporal resolution of at least 167 ms, a heart rate of ≤75 beats per minute results in acceptable image quality.

New dual-source CT scanners, acceptable image quality of the coronary arteries has been obtained at up to 90 beats per minute. Therefore, pharmacological heart-rate control may not be necessary for many of the patients who undergo coronary CTA on dual-source scanners.

Some investigators and practitioners of coronary CTA administer sublingual nitroglycerin immediately before the scan to achieve vasodilatation. The use of nitroglycerin has been shown to improve image quality in one small study performed using 16-slice MDCT.

Radiation Dose

Coronary CTA can expose a patient to considerably higher amounts of ionizing radiation than standard radiographs, CT calcium scoring, or x-ray angiography. The reasons for the higher radiation dose are that continuous x-ray irradiation occurs during the entire 8- to 20-second MDCT scan, and this is coupled with overlapping slices and specific requirements for x-ray tube current and voltage. To maintain low levels of image noise and thus high image quality, x-ray tube current (mA) and tube voltage (kVp) must be increased with increasing patient body size or decreasing slice thickness or scan time. For a given slice thickness, radiation dose increases linearly with tube current and by the square of the ratio between the original and increased tube voltage setting.

The radiation doses for coronary CTA reported in the literature vary, mostly because of technical differences between scanner generations (eg, 16 versus 64 slice) and between scanners from various manufacturers. The most meaningful parameters of CT dosimetry are the volume CT dose index (CTDVol) and the effective dose (E). The CTDVolk expressed in SI units of milliGray (mGy) represents the average radiation dose over the center slice of a CT scan and is useful for comparing absorbed radiation doses from different CT scanning protocols. The CTDVolk value increases with decreasing pitch (defined as the patient-table advance relative to the width of all simultaneously acquired slices and not relative to the width of a single slice). The CTDVolk is typically displayed on the CT scanner console once an imaging protocol has been loaded. E is the radiation dose parameter most frequently reported in the coronary CTA literature and is expressed in SI units of milliSievert (mSv). E cannot be
measured but is a rough estimate of the biological risk of a partial body exposure relative to an equivalent whole-body radiation exposure. E is typically used to analyze population dose rather than individual patient dose. The use of E allows comparisons between the biological effects of exposure to ionizing radiation from various sources and is not limited to medical imaging. There are several techniques for estimating E, and these are generally in good agreement. Some models report a gender-specific E, whereas others average radiation doses between both genders. At present, the way that effective dose quantitatively translates into a lifetime risk of malignancies in subjects exposed to ionizing radiation is a controversial topic.

In general, radiation dose increases with increasing number and thinner collimation of slices acquired simultaneously during each gantry rotation, because of detector inefficiency in the presence of a broader x-ray beam and higher photon requirements to keep image noise constant if slice thickness is reduced. E values for vendor-recommended MDCT coronary angiography scanning protocols range from 10.9 mSv for male patients and 13.0 mSv for female patients with use of a 4-slice scanner to 13.0 mSv averaged between male and female patients with a 16-slice scanner. For comparison, an individual receives an \(\approx 3 \) mSv radiation dose each year from natural background radiation, 0.05 mSv for a chest x-ray, and \(\approx 5 \) to 6 mSv for a diagnostic x-ray coronary angiogram. With present technology, use of MDCT coronary CTA in a population that is at very low risk for coronary artery disease is inappropriate, because the risk associated with the radiation exposure may exceed the potential benefit of the CTA.

Radiation dose from coronary CTA can be reduced by using several techniques, not all of which are available on every MDCT scanner on the market. One technique, termed ECG-controlled tube-current modulation, decreases x-ray tube current during systole. Because coronary CTA images are typically reconstructed from data acquired during diastole, image quality is maintained particularly for lower heart rates. ECG-controlled tube-current modulation decreases radiation dose by 25% to 45%, depending on the patient’s heart rate during the scan. A second method for radiation dose reduction is to reduce the x-ray tube current while scanning in the anterior-posterior plane compared with when scanning through the lateral plane.

In recent clinical studies of 64-slice MDCT coronary CTA, E has ranged from \(\approx 10 \) to 14 mSv with ECG-triggered tube-current modulation to 13 to 15 mSv for men and 18 to 21 mSv for women without tube-current modulation. In a study of 1035 patients undergoing coronary CTA with tube-current modulation, radiation dose estimates were 6 ± 2 and 11 ± 4 mSv for 16- and 64-slice CTA, respectively. Using higher pitch and greater time per cardiac cycle during which tube current is reduced by tube-current modulation may substantially reduce the radiation dose received from coronary CTA with dual-source CT scanners.

CTA Applications

Anomalous Coronary Artery

Multiple published series exist of patients who underwent comparison of coronary CTA data with x-ray angiography (Table 5) for anomalous coronary artery evaluation. The assessment of anomalous coronary origin via cardiac CT has been shown to be accurate and of benefit in detecting and characterizing anomalous coronary artery compared with x-ray angiography.

Coronary CTA for Identification of Native Vessel Coronary Stenoses

The feasibility of coronary CTA was initially demonstrated with 4-slice MDCT. However, image evaluation was impaired in many cases owing to limited spatial and temporal resolution. With the introduction of 16-slice MDCT, image quality in coronary CTA has become more consistent. The minimal technical prerequisite for contrast-enhanced MDCT coronary CTA is 16-slice technology with a gantry rotation time of <500 ms and slice collimation of <1.0 mm. Several studies have been published that demonstrated substantially improved image quality over previous scanner generations and generally improved accuracy for the detection of coronary artery stenoses (sensitivity of 30% to 98% and specificity of 86% to 98%, Table 6). Studies that used 16-slice acquisition and rotation times of <400 ms have reported sensitivities between 83% and 98% as well as specificities between 96% and 98%.

Shorter examination times are possible with 64-slice MDCT; these scanners also frequently incorporate improved temporal and spatial resolution compared with 16-slice MDCT. To date, the sensitivity and specificity of MDCT studies range from 73% to 100% and 91% to 97%, respectively (Table 6). Meta-analyses of 64-slice MDCT studies arrived at sensitivities of 93% and specificity of 96% (in 6 studies) and sensitivities of 86% and specificity of 96% (in 19 studies).

Studies to evaluate the accuracy of coronary CTA for stenosis detection have been limited by relatively small patient groups. In early studies, patients were excluded from enrollment (e.g., patients with arrhythmias); also, non-evaluable segments were often excluded from analysis. These exclusions limit the applicability of the reported results to the clinical situation.

Detection of in-stent restenosis has been challenging with 16-slice MDCT, because artifacts caused by stent material frequently preclude adequate visualization of the stent lumen. In 5 small studies that compared coronary CTA to invasive angiography (Table 5) for anomalous coronary artery evaluation. The assessment of anomalous coronary origin via cardiac CT has been shown to be accurate and of benefit in detecting and characterizing anomalous coronary artery compared with x-ray angiography.
Table 6. CTA for the Detection of Coronary Artery Stenosis

<table>
<thead>
<tr>
<th>Reference</th>
<th>Technique</th>
<th>No. of Patients</th>
<th>Not Evaluable, %</th>
<th>Sensitivity, %</th>
<th>Specificity, %</th>
<th>Negative Predictive Value, %</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nieman et al114</td>
<td>16-slice CT</td>
<td>59</td>
<td>7</td>
<td>95</td>
<td>86</td>
<td>97</td>
<td>Per-artery analysis, all segments >2.0 mm</td>
</tr>
<tr>
<td>Ropers et al115</td>
<td>16-slice CT</td>
<td>77</td>
<td>12</td>
<td>93</td>
<td>92</td>
<td>97</td>
<td>Per-artery analysis, all segments >1.5 mm</td>
</tr>
<tr>
<td>Kuettner et al116</td>
<td>16-slice CT</td>
<td>58</td>
<td>...</td>
<td>72 to 98*</td>
<td>97 to 98*</td>
<td>97 to 100*</td>
<td>Per-segment analysis, all of 13 segments (in patients with Agatston score <1000*)</td>
</tr>
<tr>
<td>Mollet et al117</td>
<td>16-slice CT</td>
<td>128</td>
<td>...</td>
<td>92</td>
<td>95</td>
<td>98</td>
<td>Per-segment analysis, all segments >2.0 mm</td>
</tr>
<tr>
<td>Martuscelli et al117</td>
<td>16-slice CT</td>
<td>64</td>
<td>16</td>
<td>89</td>
<td>98</td>
<td>98</td>
<td>Per-segment analysis, all segments >1.5 mm</td>
</tr>
<tr>
<td>Hoffmann et al118</td>
<td>16-slice CT</td>
<td>33</td>
<td>...</td>
<td>63 to 89*</td>
<td>95 to 96*</td>
<td>96 to 97*</td>
<td>Per-segment analysis, all of 17 segments (proximal and mid segments*)</td>
</tr>
<tr>
<td>Fine et al119</td>
<td>16-slice CT</td>
<td>50</td>
<td>2</td>
<td>87</td>
<td>97</td>
<td>98</td>
<td>Per-segment analysis, all segments >1.5 mm</td>
</tr>
<tr>
<td>Kaiser et al120</td>
<td>16-slice CT</td>
<td>140</td>
<td>23</td>
<td>30</td>
<td>9</td>
<td>83</td>
<td>Per-segment analysis, all segments >1.5 mm</td>
</tr>
<tr>
<td>Aviram et al121</td>
<td>16-slice CT</td>
<td>22</td>
<td>...</td>
<td>86</td>
<td>98</td>
<td>98</td>
<td>Per-segment analysis, all segments >1.5 mm</td>
</tr>
<tr>
<td>Kuettner et al122</td>
<td>16-slice CT</td>
<td>72</td>
<td>7</td>
<td>82</td>
<td>98</td>
<td>97</td>
<td>Per-segment analysis, all of 13 segments</td>
</tr>
<tr>
<td>Mollet et al123</td>
<td>16-slice CT</td>
<td>51</td>
<td>...</td>
<td>95</td>
<td>98</td>
<td>99</td>
<td>Per-segment analysis, all segments >1.5 mm</td>
</tr>
<tr>
<td>Schuijf et al124</td>
<td>16-slice CT</td>
<td>45</td>
<td>6</td>
<td>98</td>
<td>97</td>
<td>100</td>
<td>Per-segment analysis, all segments >1.5 mm</td>
</tr>
<tr>
<td>Hoffmann et al125</td>
<td>16-slice CT</td>
<td>103</td>
<td>6</td>
<td>95</td>
<td>98</td>
<td>99</td>
<td>Per-segment analysis, all segments >1.5 mm</td>
</tr>
<tr>
<td>Morgan-Hughes et al126</td>
<td>16-slice CT</td>
<td>58</td>
<td>2 to 37*</td>
<td>83 to 89*</td>
<td>97 to 98*</td>
<td>97 to 99*</td>
<td>Per-segment analysis, all of 15 segments (in patients with Agatston score <400*)</td>
</tr>
<tr>
<td>Achenbach et al127</td>
<td>16-slice CT</td>
<td>50</td>
<td>4</td>
<td>94</td>
<td>96</td>
<td>99</td>
<td>Per-segment analysis, all segments >1.5 mm</td>
</tr>
<tr>
<td>Garcia et al128</td>
<td>16-slice CT</td>
<td>187</td>
<td>29</td>
<td>85</td>
<td>91</td>
<td>99</td>
<td>Per-segment analysis, all segments >2.0 mm</td>
</tr>
<tr>
<td>Cordeiro et al129</td>
<td>32-slice CT</td>
<td>30</td>
<td>20</td>
<td>76</td>
<td>94</td>
<td>96</td>
<td>Per-artery analysis in patients with previously known coronary artery disease, all segments >2.0 mm</td>
</tr>
<tr>
<td>Leschka et al130</td>
<td>64-slice CT</td>
<td>67</td>
<td>...</td>
<td>94</td>
<td>97</td>
<td>99</td>
<td>Per-segment analysis, all segments >1.5 mm</td>
</tr>
<tr>
<td>Leber et al131</td>
<td>64-slice CT</td>
<td>59</td>
<td>7</td>
<td>73</td>
<td>97</td>
<td>99</td>
<td>Per-segment analysis, segments without severe motion artifact and vessel contrast to noise >4</td>
</tr>
<tr>
<td>Ehara et al132</td>
<td>64-slice CT</td>
<td>69</td>
<td>8</td>
<td>90</td>
<td>94</td>
<td>95</td>
<td>Per-segment analysis, segments without severe motion artifact</td>
</tr>
<tr>
<td>Raff et al133</td>
<td>64-slice CT</td>
<td>70</td>
<td>12</td>
<td>86</td>
<td>95</td>
<td>98</td>
<td>Per-segment analysis, all segments >1.5 mm</td>
</tr>
<tr>
<td>Fine et al134</td>
<td>64-slice CT</td>
<td>66</td>
<td>4</td>
<td>95</td>
<td>96</td>
<td>92</td>
<td>Per-artery analysis, all arteries >1.5 mm</td>
</tr>
<tr>
<td>Ropers et al135</td>
<td>64-slice CT</td>
<td>82</td>
<td>4</td>
<td>95</td>
<td>93</td>
<td>99</td>
<td>Per-segment analysis, all segments >1.5 mm</td>
</tr>
<tr>
<td>Mollet et al136</td>
<td>64-slice CT</td>
<td>52</td>
<td>2</td>
<td>99</td>
<td>95</td>
<td>99</td>
<td>Per-segment analysis, 15-segment model</td>
</tr>
<tr>
<td>Nikolaou et al137</td>
<td>64-slice CT</td>
<td>72</td>
<td>10</td>
<td>86</td>
<td>95</td>
<td>97</td>
<td>Per-segment analysis, all segments >1.5 mm</td>
</tr>
<tr>
<td>Schlosser et al138</td>
<td>64-slice CT</td>
<td>61</td>
<td>...</td>
<td>100</td>
<td>95</td>
<td>100</td>
<td>Per-segment analysis, unevaluable segments considered stenotic</td>
</tr>
<tr>
<td>Muhlenbruch et al139</td>
<td>64-slice CT</td>
<td>51</td>
<td>...</td>
<td>87</td>
<td>95</td>
<td>98</td>
<td>Per-segment analysis</td>
</tr>
<tr>
<td>Melbboom et al140</td>
<td>64-slice CT</td>
<td>104</td>
<td>...</td>
<td>92</td>
<td>91</td>
<td>99</td>
<td>Per-segment analysis</td>
</tr>
<tr>
<td>Schuijf et al141</td>
<td>64-slice CT</td>
<td>60</td>
<td>...</td>
<td>85</td>
<td>98</td>
<td>99</td>
<td>Per-segment analysis</td>
</tr>
</tbody>
</table>

(Continued)
angiography, sensitivity for detection of in-stent restenosis by 16- and 40-slice MDCT was 54% to 100%. Up to 49% of stents were not evaluable. One study that assessed only stents implanted in the left main coronary artery (mean stent diameter 3.9 mm) found 4 of 4 stent restenoses. A recent study performed by 64-slice CT in 64 patients with 102 stents demonstrated that only 58% of stents were evaluable by CT. In evaluable stents, sensitivity and specificity for detection of in-stent stenosis was 86% and 98%. However, in this and other studies, a substantial influence of stent size and material, as well as of CT system specifications and image acquisition and reconstruction protocols used on stent visibility has been documented. Thus, routine assessment of coronary stents has not been shown to be reliable with present technology.

The presence of hemodynamically relevant coronary artery stenoses in patients without stents and bypass grafts may be ruled out by MDCT with a high negative predictive value (between 98% and 100% in most studies). MDCT for the detection of hemodynamically relevant coronary artery stenoses should be limited to patients who do not have a high pretest probability. In patients with a high pretest probability of coronary stenoses, a clinical benefit of MDCT coronary angiography is unlikely, given the increased likelihood that interventional treatment (invasive angiography or bypass surgery) will be necessary. In the case of equivocal stress-test results, it is conceivable but unproven that MDCT coronary CTA may facilitate a decision for or against invasive coronary angiography. Screening of asymptomatic individuals concerning the presence of coronary artery stenoses is not justified at present.

Coronary CTA for Coronary Artery Bypass Graft Assessment

Occlusion and patency of arterial and venous bypass grafts can be assessed with high accuracy (sensitivity of 100% for detection of bypass occlusion in 3 studies performed with 16-slice MDCT). However, the detection of coronary stenoses at the anastomotic site and in the native coronary arteries after bypass surgery has been difficult with both 16-slice and 64-slice systems. Specifically, overestimation of coronary obstruction has been reported in the presence of coronary calcification (Table 7).

Limitations of Coronary CTA and MRA

Coronary MRA and CTA are purely diagnostic tests that do not provide an option for immediate intervention and do not presently serve as the only basis for performing coronary artery bypass surgery. No outcomes-based analysis has been performed to establish the usefulness of either modality in a given clinical situation. The published comparisons between coronary CTA and MRA on one hand and catheter-based angiography on the other have generally comprised relatively
small groups of patients who were preselected to undergo angiography as well as CTA or MRA.

A technical limitation of both CTA and MRA is lower spatial resolution than is possible with invasive angiography. It has not been consistently shown that either method accurately grades the degree of luminal narrowing within coronary artery lesions. Because the temporal resolution is low, motion artifacts can occur that cause false-negative and false-positive findings. Other image artifacts can be introduced by the patient’s inability to follow breathing commands, involuntary motion of the diaphragm, and arrhythmias that occur during the CTA or MRA scan. Continuous visualization of the coronary arteries is not possible at present in patients with atrial fibrillation or frequent ectopy.

Potential risks associated with coronary CTA and MRA include the use of sublingual nitroglycerin as well as pharmacological control of heart rate for CTA. The image quality of coronary CTA has been shown to benefit by the administration of β-blocker therapy to slow the heart rate. The potential for patient self-referral for coronary CTA or MRA without knowledge of its benefits versus risks expands questions of risk assessment into the public health and policy arena.155

Limitations Specific to Coronary CTA

Relative to invasive angiography as well as coronary CTA, the spatial resolution of MRA is significantly lower. This lower spatial resolution, along with the necessity to average data from several cardiac cycles to form an image, is probably one of the primary reasons for the generally lower reported sensitivity and specificity of coronary MRA compared with CTA (Tables 2 through 6). However, one recent direct comparison of MRA and 16-slice MDCT coronary CTA showed similar sensitivity (75% versus 82%, respectively) and specificity (77% versus 79%, respectively)47 despite these acknowledged differences in spatial resolution between the two methods.

The techniques for coronary MRA vary based on the MR vendor and software availability. Coronary MRA may not be widely available, particularly at community imaging centers. Patients who have implanted electronic devices such as internal defibrillators are generally excluded from receiving MR imaging. Metal in the chest from sternal wires or from coronary stents may preclude visualization of coronary arteries near the metal. Claustrophobia occurs in 1% to 5% of patients who undergo MR imaging. This can be controlled by the administration of anxiolytics, but substantially altered breathing patterns and reduced ability to cooperate may negatively affect the quality of the examination. Nondiagnostic MRA examinations may occur in patients with highly irregular breathing patterns. Coronary MRA examination time in experienced labs should be ∼30 minutes using a 2D breath-hold strategy. Using 3D whole-heart imaging, similar scanning times are reported.

Limitations Specific to Coronary CTA

Calcifications within the coronary arteries can cause false-negative and, more frequently, false-positive findings concerning the presence of coronary artery stenosis. Coronary artery segments with substantial calcification may not be evaluable with respect to the presence of a hemodynamically relevant stenosis. The coronary lumen is generally not well observed in the region of a coronary stent.

Coronary CTA requires intravenous injection of iodinated contrast media. Because patients may subsequently require invasive angiography, those with compromised renal function are generally excluded from coronary CTA. In addition to nephrotoxicity, intravenous administration of iodinated contrast media may also be associated with anaphylactoid reaction.156–161

Table 7. Evaluation of Coronary Artery Bypass Graft Occlusion and Patency by 16-Slice and 64-Slice Coronary CTA

<table>
<thead>
<tr>
<th>Reference</th>
<th>No. of Patients</th>
<th>Sensitivity, %</th>
<th>Specificity, %</th>
<th>Not Evaluable, %</th>
<th>Sensitivity, %</th>
<th>Specificity, %</th>
<th>Not Evaluable, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nieman et al146</td>
<td>24</td>
<td>100</td>
<td>98</td>
<td>0 to 5</td>
<td>60 to 83</td>
<td>88 to 90</td>
<td>5 to 10</td>
</tr>
<tr>
<td>Martuscelli et al145</td>
<td>96</td>
<td>100</td>
<td>100</td>
<td>9 to 12</td>
<td>90</td>
<td>100</td>
<td>9 to 12</td>
</tr>
<tr>
<td>Schloesser et al147</td>
<td>51</td>
<td>100</td>
<td>100</td>
<td>12</td>
<td>90</td>
<td>100</td>
<td>12</td>
</tr>
<tr>
<td>Chiurlia et al150</td>
<td>51</td>
<td>100</td>
<td>100</td>
<td>0</td>
<td>96</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>Moore et al151</td>
<td>50</td>
<td>100</td>
<td>100</td>
<td>0</td>
<td>100</td>
<td>99</td>
<td>0</td>
</tr>
<tr>
<td>Burgstahler et al149</td>
<td>13</td>
<td>100</td>
<td>100</td>
<td>5</td>
<td>100</td>
<td>93</td>
<td>0</td>
</tr>
<tr>
<td>Salm et al153</td>
<td>25</td>
<td>100</td>
<td>100</td>
<td>8</td>
<td>100</td>
<td>94</td>
<td>8</td>
</tr>
<tr>
<td>Anders et al148</td>
<td>32</td>
<td>100</td>
<td>98</td>
<td>0</td>
<td>75 to 100</td>
<td>92 to 93</td>
<td>16</td>
</tr>
<tr>
<td>Pache et al152</td>
<td>31</td>
<td>100</td>
<td>100</td>
<td>3</td>
<td>98</td>
<td>98</td>
<td>3</td>
</tr>
<tr>
<td>Malagutti et al154</td>
<td>52</td>
<td>99†</td>
<td>96†</td>
<td>0†</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>Meyer et al145</td>
<td>138</td>
<td>97</td>
<td>97</td>
<td>2</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>Onuma et al146</td>
<td>54</td>
<td>100</td>
<td>100</td>
<td>...</td>
<td>100</td>
<td>98</td>
<td>5</td>
</tr>
<tr>
<td>Feuchtner et al147</td>
<td>41</td>
<td>85</td>
<td>95</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>Ropers et al148</td>
<td>50</td>
<td>100</td>
<td>94</td>
<td>0</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

*Sensitivity and specificity based on luminal stenosis >50%.
†Analysis of graft stenosis and graft occlusion combined.
The predominant risk of coronary CTA is radiation exposure (as discussed in Radiation Dose). Recent improvements in spatial and temporal resolution of MDCT have made coronary CTA feasible in infants and children, particularly for delineation of anomalous coronary artery origin and course. However, the projected lifetime cancer mortality that is attributable to radiation exposure from CT is significantly higher in children than in adults. Bismuth-coated latex shielding placed over breast tissue has been suggested to decrease breast radiation exposure by 40% without significant image degradation during CT of female children. High heart rates and the potential need for sedation further complicate the expansion of MDCT to the pediatric population.

Reporting of Coronary CTA and MRA Results

The coronary CTA or MRA report (Table 8) should provide as much information as possible using terminology similar to that used in the reporting of catheter-based angiography. Compared with MRA, coronary CTA is more frequently performed for clinical evaluation of atherosclerotic coronary artery disease. Coronary CTA can assess the presence of noncalcified and calcified coronary artery plaque, whereas coronary MRA cannot easily differentiate between the two. Although the additional performance of high-resolution imaging of the coronary artery wall may assist in plaque-component characterization, this technique is still in its infancy.

A comment should be made in the report regarding the technical quality of the examination, especially if it is poor or adversely affected by respiratory motion, cardiac motion, or poor contrast opacification. Unlike x-ray angiography, both CTA and MRA examinations will image the valves, great arteries, myocardium, pericardium, and adjacent lung tissue.
plaque in the absence of a significant luminal stenosis. Other markers of vulnerability include presence of inflammatory cells, a thin fibrous cap, and a large lipid core. These rupture-prone plaques, which are 7 times more likely to ulcerate than the more severe, extensive plaques, are not visible on 2D x-ray angiography. Thus, techniques for noninvasive imaging of atherosclerotic plaque with MR or CT have been of great interest.

The likelihood of plaque rupture is based on plaque composition rather than plaque volume. It has been observed that unstable plaques are generally higher in lipid content than stable plaques. Most ruptures occur in plaques containing a soft, lipid-rich core covered by a thin, inflamed fibrous cap. A thin fibrous cap is on the order of 70 μm, which is 10 times beyond the present in-plane resolution of MDCT (750 μm) and magnetic resonance imaging (MRI; 500 to 780 μm).

Noncalcific Plaque Detection With Coronary CTA

Improved spatial and temporal image acquisition with submillimeter slice collimation has facilitated atherosclerotic plaque detection via MDCT. Preliminary studies suggest that CT has the potential to distinguish between fat tissue, fibrous tissue, and calcium. The lowest CT density values correlate well with lipid-laden plaque on intravascular ultrasound (IVUS), whereas intermediate densities correlate with fibrous lesions. However, overlap between densities makes distinction between fibrous and soft plaques more problematic. At present, assessment of noncalcified plaque remains limited to studies of very high image quality and may not pertain to average clinical applications.

CT technology has been compared with intravascular ultrasound in the classification of plaque composition with cardiac CT. In the largest MDCT study that evaluated 875 coronary segments, sensitivity values for hypoechoic, hyperechoic, and calcific plaques were 78%, 78%, and 95%, respectively, whereas specificity was 92%. However, this study demonstrated that optimal diagnostic image quality was not obtained for 15% of coronary vessels. The investigators also conceded that noncalcified plaque visualization is limited by plaque and vessel size. The smaller plaques located in smaller coronary sections were not accurately characterized. Advances in spatial resolution in future generations of CT may help overcome these limitations.

Quantification of coronary atherosclerotic plaque burden using CT technology is presently limited. In the study by Achenbach et al., MDCT substantially underestimated plaque volume per segment as compared with IVUS (24±35 versus 43±60 mm³, P<0.001). In other comparisons between MDCT and IVUS, plaque areas showed moderate correlation (r=0.55) between the two methods, with a significant tendency toward overestimation by MDCT (8.3±4.8 versus 7.3±3.1 mm³, P<0.001). Plaque volumes in the proximal coronary arteries were found to correlate significantly between 64-slice MDCT and IVUS, with a correlation coefficient of r=0.83. However, interobserver variability for plaque volume measurements by MDCT have been as high as 37%. The Scientific Statement on Cardiac CT published by the American Heart Association discusses the applications of soft-plaque detection and the relationship to calcified plaque.

Noncalcific Plaque Detection With MR

The coronary artery wall may be evaluated with MR using “black-blood” pulse sequences that do not require iodinated contrast media or ionizing radiation. Black-blood MR has been used extensively for imaging plaque in the carotid wall. At present, the maximum resolution of the method is 500 to 780 μm.

The wall thickness in MR corresponds to intima, media, and adventitial layers, with increased wall thickening in atherosclerosis occurring primarily in the media. In patient studies, coronary wall thickness with preservation of lumen size in patients with nonsignificant coronary artery disease, which is consistent with a Glagov type of outward arterial remodeling. MR of coronary arteries in patients with >40% stenosis as assessed by x-ray angiography revealed localized wall thickness; the difference in maximum wall thickness between the normal subjects and patients was statistically significant (P=0.0001). Individuals with mild yet angiographically detectable coronary artery disease had a wall thickness as measured by MR of 1.7±0.3 mm; wall thickness in healthy subjects was 1.0±0.2 mm.

Intravascular MR Contrast Agents

Current FDA-approved contrast agents for MR in the United States are extracellular agents that leak rapidly (within seconds) out of the vessel lumen into the extracellular spaces. This leakage reduces enhancement of the vessel lumen. Newer intravascular agents (the so-called blood-pool agents) that are based either on gadolinium (eg, B22956 and MS-325) or iron oxide (eg, AMI 227) have been developed. The use of intravascular agents has the advantage of allowing image acquisition over longer time periods. Because the signal of blood remains relatively constant for a prolonged time after a single injection, navigator approaches or multiple breath-holds can be used after a single injection. Initial results for these contrast agents in improving vessel signal and sharpness have been reported.

Summary and Recommendations

Noninvasive coronary CTA and MRA represent substantial advances that may ultimately be valuable for diagnosis of significant coronary artery disease. The chief advantages of coronary CTA compared with MRA are wider availability, higher spatial resolution, and more consistent, shorter examinations with better patient adherence. Advantages associated with coronary MRA are a lack of ionizing radiation and a lack of administration of iodinated contrast material. Both tests are presently suboptimal for patients with atrial fibrillation and other arrhythmias, and image quality may be further reduced by high body mass.

Specific recommendations for use of these technologies are expected to change along with advances in scanner hardware and software. At present, the following general statements represent the consensus opinions of the writing group:
Classification of recommendations and levels of evidence are expressed in the American College of Cardiology/American Heart Association (ACC/AHA) format as follows:

- **Class I**: Conditions for which there is evidence for and/or general agreement that the procedure or treatment is beneficial, useful, and effective.
- **Class II**: Conditions for which there is conflicting evidence and/or a divergence of opinion about the usefulness/efficacy of a procedure or treatment.
 - **Class IIa**: Weight of evidence/opinion is in favor of usefulness/efficacy.
 - **Class IIb**: Usefulness/efficacy is less well established by evidence/opinion.
- **Class III**: Conditions for which there is evidence and/or general agreement that the procedure/treatment is not useful/effective and in some cases may be harmful.

- **Level of Evidence A**: Data derived from multiple randomized clinical trials.
- **Level of Evidence B**: Data derived from a single randomized trial or nonrandomized studies.
- **Level of Evidence C**: Only consensus opinion of experts, case studies, or standard of care.

1. Neither coronary CTA nor MRA should be used to screen for coronary artery disease in patients who have no signs or symptoms suggestive of coronary artery disease. **(Class III, level of evidence C)**

2. No multivendor trial data are available for coronary MDCT CTA or for present whole-heart coronary MRA. Thus, the applicability of these methods beyond the reporting research centers is unknown. Ideally, both multivendor and additional multicenter validation of these methods should be performed. **(Class I, level of evidence C)**

3. The potential benefit of noninvasive coronary angiography is likely to be greatest and is reasonable for symptomatic patients who are at intermediate risk for coronary artery disease after initial risk stratification, including patients with equivocal stress-test results. **(Class IIa, level of evidence B)** Diagnostic accuracy favors coronary CTA over MRA for these patients. **(Class I, level of evidence B)** Concerns regarding radiation dose limit the use of coronary CTA in high-risk patients who have a very low pretest likelihood of coronary stenoses; patients with a high pretest likelihood of coronary stenoses are likely to require intervention and invasive catheter angiography for definitive evaluation; thus, CTA is not recommended for those individuals. **(Class III, level of evidence C)** Pronounced coronary calcification may negatively impact interpretability and accuracy of coronary CTA and thus, the usefulness of CTA is uncertain in these individuals. **(Class IIb, level of evidence B)**

4. Anomalous coronary artery evaluation can be performed by either CTA or MRA; radiation-protection concerns indicate that MRA is preferred when it is available. **(Class IIa, level of evidence B)**

5. Reporting of coronary CTA and MRA results should describe any limitations to the technical quality of the examination and the size of the vessels, descriptions of coronary anomalies, coronary stenosis, and significant noncardiac findings within the field of view. **(Class I, level of evidence A)**

6. Continued research in cardiac CT and MR imaging is encouraged to determine the potential of these noncatheter-based modalities to detect, characterize, and measure atherosclerotic plaque burden, as well as its change over time or as the result of therapy. **(Class I, level of evidence C)**

Disclosures

<table>
<thead>
<tr>
<th>Writing Group Member</th>
<th>Employment</th>
<th>Research Grant</th>
<th>Other Research Support</th>
<th>Speakers’ Bureau/Honoraria</th>
<th>Ownership Interest</th>
<th>Consultant/Advisory Board</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>David A. Bluemke</td>
<td>Johns Hopkins University</td>
<td>Toshiba*, Epix Medical*, NIH†</td>
<td>Toshiba*</td>
<td>Toshiba*</td>
<td>None</td>
<td>Berlex†, GE Healthcare*</td>
<td>None</td>
</tr>
<tr>
<td>Stephan Achenbach</td>
<td>University of Erlangen</td>
<td>Siemens Medical Solutions†</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Matthew Budoff</td>
<td>Harbor-UCLA</td>
<td>None</td>
<td>None</td>
<td>General Electric*</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Thomas C. Gerber</td>
<td>Mayo Clinic, Jacksonville</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>Up To Date*</td>
<td>None</td>
</tr>
<tr>
<td>Bernard Gersh</td>
<td>Mayo Foundation</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>L. David Hillis</td>
<td>UT Health Science Center, San Antonio</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>W. Gregory Hundley</td>
<td>Wake Forest University School of Medicine</td>
<td>None</td>
<td>Bracco Diagnostics*</td>
<td>None</td>
<td>MRI Cardiac Services*</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Warren J. Manning</td>
<td>Beth Israel Deaconess Medical Center, Harvard Medical</td>
<td>Philips Medical Systems†</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
</tbody>
</table>

Downloaded from circ.ahajournals.org by June 28, 2008
Continued

<table>
<thead>
<tr>
<th>Writing Group Member</th>
<th>Employment</th>
<th>Research Grant</th>
<th>Other Research Support</th>
<th>Speakers’ Bureau/Honoraria</th>
<th>Ownership Interest</th>
<th>Consultant/Advisory Board</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beth Feller Printz</td>
<td>Columbia University</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Matthias Stuber</td>
<td>Johns Hopkins University</td>
<td>RO1 grants: coronary MRI†</td>
<td>None</td>
<td>None</td>
<td>Diagnosoft Inc*</td>
<td>Bracco Diagnostics†; Philips Medical Systems†</td>
<td>None</td>
</tr>
<tr>
<td>Pamela K. Woodard</td>
<td>Washington University School of Medicine</td>
<td>GE Healthcare*</td>
<td>Siemens*</td>
<td>GE Healthcare*</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
</tbody>
</table>

This table represents the relationships of writing group members that may be perceived as actual or reasonably perceived conflicts of interest as reported on the Disclosure Questionnaire, which all members of the writing group are required to complete and submit. A relationship is considered to be “significant” if (a) the person receives $10,000 or more during any 12-month period, or 5% or more of the person’s gross income; or (b) the person owns 5% or more of the voting stock or share of the entity, or owns $10,000 or more of the fair market value of the entity. A relationship is considered to be “modest” if it is less than “significant” under the preceding definition.

*Modest. †Significant.

Reviewer Disclosures

<table>
<thead>
<tr>
<th>Reviewer</th>
<th>Employment</th>
<th>Research Grant</th>
<th>Other Research Support</th>
<th>Speakers’ Bureau/Honoraria</th>
<th>Expert Witness</th>
<th>Ownership Interest</th>
<th>Consultant/Advisory Board</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>Samuel S. Gidding</td>
<td>A. I. duPont Hospital for Children</td>
<td>None</td>
<td>None</td>
<td>Brown University*</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Glenn N. Levine</td>
<td>Baylor College of Medicine</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Gerald Pohost</td>
<td>University of Southern California</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>E. Kent Yucel</td>
<td>Veterans Administration</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
</tbody>
</table>

This table represents the relationships of reviewers that may be perceived as actual or reasonably perceived conflicts of interest as reported on the Disclosure Questionnaire, which all reviewers are required to complete and submit. A relationship is considered to be “significant” if (a) the person receives $10,000 or more during any 12-month period, or 5% or more of the person’s gross income; or (b) the person owns 5% or more of the voting stock or share of the entity, or owns $10,000 or more of the fair market value of the entity. A relationship is considered to be “modest” if it is less than “significant” under the preceding definition.

*Modest.

References

53. Langrak SE, Vliegen HW, Jukema JW, Kunz P, Zwinderman AH, Lamb HI, van der Wall EE, de Roos A. Value of magnetic resonance

Downloaded from circ.ahajournals.org by on June 28, 2008

Huber ME, Paetsch I, Schnackenburg B, Bornstedt A, Nigel E, Fleck E, Boesiger P, Maggioni F, Cavagna FM, Stuber M. Performance of a new gadolinium-based intravascular contrast agent in free-breathing

KEY WORDS: AHA Scientific Statements angiography imaging